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The catalytic Fleming-Viot branching system

» The catalytic Fleming-Viot branching system is a jump diffu-
sion process describing a system of diffusing particles (see
Grigorescu [3]).

» The hydrodynamic limit for the empirical measure is the so-
lution to a generalized semilinear (reaction-diffusion) equa-
tion, with nonlinearity given by a quadratic operator.



» d-dimensional unit torus TY = R9/79,

» V(x) is a bounded continuous function on T9.

> For x = (xy, X, ,xn) € (THON, x¥ € (TN is the vector
where the component i has been deleted and replaced with
the component jforall 1 <i#j<N.

> he C'2([0,00) x T9), H(t,x) = SN . h(t, x;), and
1 i .
pl(;hh(t? X) = Pij= N — 1 eH(ij) H(t’X)a J#1, p;;hh =pi=0.
(1.1)




> ((dx) is a probability measure on (T9)V.
> P, is a probability measure on D([0, o), (T?)") such that
under Pé’H, the coordinate process

{X(t) = (X1(t)7 X2(t)7 T 7XN(t))7 t Z 0}
is a Feller process with the generator E;V’h defined by

N
LNt x) = Z (;Ax,f(t, X) + Vi H(t, X) - V. K(t, x))

+§j S Al x) 1t ) V),

(1.2)
for f € C'2([0, 00) x (T9)N), where x - y denotes the inner
product.



» The process {x(t), PQ’,,} exists, and it is the solution of the
following martingale problem: for any f € C'2(]0,00) x

(TN),
MNP —f(t x(t)) — £(0, x(0))
_ / t <8sf(s,x(s))+£{V’hf(s,x(s))>ds 19
0

is a P-martingale with
sy, 1 / (erx, (s, X(s)E+ 3" plf(s, ()
J#i

x (f(s, x7(s)) — f(s, x(s))) V(x,-(s))) ds.

» The process {{x(t),t > 0}, Pé\fh} is called a catalytic Fleming-
Viot branching system.



The catalytic Fleming-Viot branching system with uniform
redistribution mechanism, i.e., h = 0.

PQ’ denotes the law of the process starting at

¢(dx) = @Liy(ax),  v(dx) = 7(x)ax,

with bounded initial density ~(x).
The expectation with respect to P} is denoted by EV.
The empirical measure process

N
’
uN(dx) = N > G € D(0, T],My(T9)), 0<t<T.
=1
' (1.4)

Consider a linear operator on the space D([0, c0), My(T?)),

a:p—a(p)(t,x) = (u, V) = V(x). (1.5)



» A measure-valued path {p:(dx),t > 0} is the unique weak
solution of the integro-differential equation

’
O = 5Op+ pau),  po =1. (1.6)

» The hydrodynamic limit (Grigorescu [3]), i.e., for any ¢ €
C'2([0, T] x T9), any ¢ > 0,

lim Pﬁ’( sup |(uf' () = pe(-), (8, )] = 6> =0. (1.7)

N—o0 tel0,7]

» The large deviations for the empirical measure process (
Grigorescu [3]).



Our purpose

» Fluctuation: The weak convergence of the empirical fluctu-
ation fields nN(dx), N > 1 defined by

nN(dx \Fz w(n(aX) = p(dx)), (1.8)

» The moderate deviation principle: The large deviation prin-
ciple of the centralized empirical measure process

N
~ 1 vN
N N Z — Pt dX)) a(N) N(dX)
i=1
' (1.9)
where {a(t),t > 0} is a positive function with

tl_imoa(t)/\/f: 00, lim a(t)/t=0, (1.10)

t—o0



Fluctuations

> For every integer m, for each g € C>(T?), define

1/2
lglm=1{ > /d 8% g(x)|2dx < 0.
kl<m” T

Let H™ be the complete of (C®(TY), || - |m), and H~™ the
dual space of H™.

> Let 1A be the Laplace operator on T and let U(t) be the
heat semigroup associated with %A on T¢.



> (AO0). h(t,x) =0, and V is a non-negative continuous func-
tion on T¢ with partial derivatives up to order (5+3D), where
D=1[d/2] +1.

» Let the condition (A0Q) hold. For m > 1 + D, let W be the

continuous Gaussian martingale process taking its values
in HI-™ with mean 0 and variance given by

E (Wi(9)?)

=/0 (;(ps,lvw2> +(ps, ©%){ps, V) = 2(ps, ) (ps, o V) +<ps,<p2V>>dS

(2.1)
forevery p e H" and t € [0, T].

» Let F; be the operator on H™ defined by

Fro(x) = (pt, V)p(x) + {pt, o) V(X) — V(X)p(x). (2.2)



Fluctuation Theorem

Theorem 2.1 (Fluctuation Theorem)
Assume that the condition (AQ) holds. Then under PQ’ , the

sequence {7, N > 1} converges in law to the generalized
Ornstein-Uhlenbeck process n with catalyst V in
D ([0, T],H-(4+2D)). j.e., for any p € H*+2P,

t t
(s 0) = (0, U(t) o)+ /0 (e, FsU(t—)p)ds+ /0 (U(t—S)p, dW),
(2.3)



Forany t € [0, T] and ¢ € C2, applying (1.3) to f(t, x(t)) =
5 S (x(1)), we have

t 1 t
o) = o+ [ gacias+ [l Fle)os + MYGo)
(2.4)

N
Flo(x) = 15— 1l Ve (x) + (ps, 9) V(x) = V(x)(x),
(2.5)
MN(y) is a square integrable martingale with

t t
W = [ (Tefras s iy [ (0l

—2(ug, o)l V) + (ug, V>)ds.
(2.6)



» Informally,
> MN(p) — W(y) follows from uN — p,
» and so if n¥ has a limit point 7, then 7 satisfies (2.3).
» In order to give a rigorous proof, we need some moment
estimates.
» The sequence

{{MN M), te [0, T]} N> 1}

is tight in D([0, T], H~(4+2D) x H~(4+2D)),

» All limit points of the sequence {£((MN, 7)), N > 1} charge
only in C([0, T], H~(“4+2D) x |~ (#+2D)),

> Let (M, n) be a weak limit point of the sequence {(MN,nN), N >
1} in D([0, T], H~(4+2D) x H~(4+2D)). Then M has the same
law as W, and (W, n) solves the equation (2.3).



Moderate deviations

Theorem 3.1 (Moderate deviations)

Assume that the condition (AQ) holds. Then the sequence
{7N, N > 1} satisfies a large deviation principle on

D([0, T], H~(5+3D)) with the speed a*(N)/N and the good rate
function I defined by

)= e, {om) - </ wontis ([ s )

L {(u) <ps,|v¢( )2)ds

$eC>([0,T]xT)

- /0 ' / d / (9ls.y) o5 1)) V(x)ps(dy)ps(dx)ds}

= Io(Vo) + /dyn(u). (3 1)



i
£al) =7, (T~ (0000 = [ ((s.000(9) + 580(6)) ) s

;
- /0 ((ps, V) (vs, 9(8)) + (ps, ¢(8))(vs, V) — (vs, 6(S) V) ds.

(3.2)
> That is, for any closed set F ¢ D([0, T], H~5+30)),
imsup o log PN € F) < — inf i) (33)
N—oo aZ(N) 7 - veF )
and for any open set O c D([0, T], H~(5+3D)),
iminf e log PG € 0) >~ inf iv).  (3.4)
;len a (N) Og 77 |n .



» Forany ¢ € C'2([0, T] x T9),
<771‘ ’ N) Z t XI Pta¢(t)>)

» We consider the exponential martingale Zf”N associated
with £ &N (1)) . Under the condition (A) holds, PN-
martlngale Z¢ N has the following approximation:

2 2 T
Z?’N =exp {aI(VN)%(ﬁN) — az(lC/) /0 <<N{sv7 |V¢(S)|2>

/Td/ (8,y) = (5, )" V(x)n (dY)Ms(dX)>ds

2
+al(VN)/0 <77éva¢(8)><,u _Ps7V>ds+o( I(VN) }
(3.5)




» Define

Mole) =5 ( [ wearaeoa- ([ dw(x)v(x)dx)z) ,

T
Adyn(®) :%/ {ps, [V o( S)|2>ds

2/ /d /d S y V(X)ps(dy)Ps(dX)dS,
N, @) =No(¥) + Agyn(9)



> If [ (N, 6(8)) (Y — ps, V)ds — 0 in MDP sense,
then

2" = oo { X0 (1)~ ha)) +0 (T2 ) .

» For any v € D([0, T],H~(5+3D)) and the ball B(v, <), when
N — o0o,e =0,

N
2(N) log P\ (B(v,£)) ~ —I(v)
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