Fluctuations and moderate deviations for a catalytic Fleming-Viot branching system in nonequilibrium

Fuqing Gao

School of Mathematics and Statistics Wuhan University

The 17th Workshop on Markov Processes and Related Topics November 25-27, 2022 Beijing Normal University

Joint work with Yunshi Gao and Jie Xiong

KORKARA KERKER DAGA

[Background and Model](#page-2-0)

[Fluctuations](#page-9-0)

[Moderate deviations](#page-14-0)

KO K K Ø K K E K K E K Y S K Y K K K K K

The catalytic Fleming-Viot branching system

- \triangleright The catalytic Fleming-Viot branching system is a jump diffusion process describing a system of diffusing particles (see Grigorescu [\[3\]](#page-19-0)).
- \blacktriangleright The hydrodynamic limit for the empirical measure is the solution to a generalized semilinear (reaction-diffusion) equation, with nonlinearity given by a quadratic operator.

KORK ERKER ADAM ADA

- \blacktriangleright *d*-dimensional unit torus $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$.
- \blacktriangleright $V(x)$ is a bounded continuous function on \mathbb{T}^d .
- ▶ For $\boldsymbol{x} = (x_1, x_2, \dots, x_N) \in (\mathbb{T}^d)^N$, $\boldsymbol{x}^{ij} \in (\mathbb{T}^d)^N$ is the vector where the component *i* has been deleted and replaced with the component *j* for all $1 \le i \ne j \le N$.

$$
\blacktriangleright h \in C^{1,2}([0,\infty) \times \mathbb{T}^d), H(t,\mathbf{x}) = \sum_{i=1}^N h(t,x_i), \text{ and}
$$

$$
\rho_{ij}^{N,h}(t,\mathbf{x}) = \rho_{ij} = \frac{1}{N-1} e^{H(t,\mathbf{x}^{ij})-H(t,\mathbf{x})}, \ \ j \neq i, \quad \rho_{ii}^{N,h} = \rho_{ii} = 0. \tag{1.1}
$$

KORKARA KERKER DAGA

- \blacktriangleright $\zeta(dx)$ is a probability measure on $(\mathbb{T}^d)^N$. \blacktriangleright $P^N_{\zeta,H}$ is a probability measure on $D([0,\infty),(\mathbb{T}^d)^N)$ such that
	- under $P_{\zeta,H}^{\mathcal{N}},$ the coordinate process

$$
\{x(t)=(x_1(t),x_2(t),\cdots,x_N(t)), t\geq 0\}
$$

is a Feller process with the generator $\mathcal{L}^{N,h}_{t}$ $t^{\prime\prime\prime}$ defined by

$$
\mathcal{L}_{t}^{N,h}f(t,\mathbf{x}) = \sum_{i=1}^{N} \left(\frac{1}{2} \triangle_{x_i} f(t,\mathbf{x}) + \nabla_{x_i} H(t,\mathbf{x}) \cdot \nabla_{x_i} f(t,\mathbf{x}) \right) + \sum_{i=1}^{N} \int_{0}^{t} \sum_{j \neq i} p_{ij}^{N,h}(t,\mathbf{x}) (f(t,\mathbf{x}^{ij}) - f(t,\mathbf{x})) V(x_i),
$$
\n(1.2)

for $f\in C^{1,2}([0,\infty)\times (\mathbb{T}^d)^N),$ where $x\cdot y$ denotes the inner product.

KORKAR KERKER E VOOR

▶ The process $\{x(t), P_{\zeta,h}^N\}$ exists, and it is the solution of the following martingale problem: for any $f \in C^{1,2}([0,\infty) \times \mathbb{R})$ $(\mathbb{T}^d)^N$),

$$
M_t^{N,h,f} = f(t, \mathbf{x}(t)) - f(0, \mathbf{x}(0))
$$

-
$$
\int_0^t \left(\partial_s f(s, \mathbf{x}(s)) + \mathcal{L}_t^{N,h} f(s, \mathbf{x}(s)) \right) ds
$$
 (1.3)

is a *P*-martingale with

$$
\langle M^{N,h,f}\rangle_t=\frac{1}{2}\int_0^t\bigg(\sum_{i=1}^N|\nabla_{x_i}f(s,\mathbf{x}(s))|^2+\sum_{j\neq i}p_{ij}^{N,h}(s,\mathbf{x}(s))\\ \times\big(f(s,\mathbf{x}^{ij}(s))-f(s,\mathbf{x}(s))\big)V(x_i(s))\bigg)ds.
$$

▶ The process $\{\{\mathbf{x}(t), t \geq 0\}, P_{\zeta,h}^N\}$ is called a catalytic Fleming-Viot branching system.

KORKAR KERKER E VOOR

- ▶ The catalytic Fleming-Viot branching system with uniform redistribution mechanism, i.e., $h = 0$.
- \blacktriangleright P^N_{γ} denotes the law of the process starting at

$$
\zeta(d\mathbf{x})=\otimes_{j=1}^N\gamma(d\mathbf{x}_j),\quad \gamma(d\mathbf{x})=\gamma(\mathbf{x})d\mathbf{x},
$$

with bounded initial density $\gamma(x)$.

- ▶ The expectation with respect to P^N_γ is denoted by E^N_γ .
- \blacktriangleright The empirical measure process

$$
\mu_t^N(d\bm{x}) = \frac{1}{N} \sum_{i=1}^N \delta_{x_i(t)} \in D([0, T], M_1(\mathbb{T}^d)), \ \ 0 \leq t \leq T. \tag{1.4}
$$

▶ Consider a linear operator on the space $D([0,\infty), M_b(\mathbb{T}^d))$,

$$
a: \mu \to a(\mu)(t,x) = \langle \mu_t, V \rangle - V(x). \tag{1.5}
$$

KID K@ KKEX KEX E 1090

▶ A measure-valued path $\{\rho_t(dx), t \ge 0\}$ is the unique weak solution of the integro-differential equation

$$
\partial_t \mu = \frac{1}{2} \triangle \mu + \mu \mathbf{a}(\mu), \quad \mu_0 = \gamma. \tag{1.6}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

▶ The hydrodynamic limit (Grigorescu [\[3\]](#page-19-0)), i.e., for any $\phi \in \mathbb{R}$ $C^{1,2}([0, T] \times \mathbb{T}^d)$, any $\varepsilon > 0$,

$$
\lim_{N\to\infty} P^N_\gamma\left(\sup_{t\in[0,T]}|\langle\mu^N_t(\cdot)-\rho_t(\cdot),\phi(t,\cdot)\rangle|\geq\varepsilon\right)=0.\quad (1.7)
$$

▶ The large deviations for the empirical measure process (Grigorescu [\[3\]](#page-19-0)).

Our purpose

▶ Fluctuation: The weak convergence of the empirical fluctuation fields $\eta_t^{\mathcal{N}}(d\mathsf{x})$, $\mathcal{N} \geq 1$ defined by

$$
\eta_t^N(dx) = \frac{1}{\sqrt{N}} \sum_{i=1}^N (\delta_{x_i(t)}(dx) - \rho_t(dx)), \qquad (1.8)
$$

 \triangleright The moderate deviation principle: The large deviation principle of the centralized empirical measure process

$$
\widetilde{\eta}_t^N(dx) = \frac{1}{a(N)} \sum_{i=1}^N (\delta_{x_i(t)}(dx) - \rho_t(dx)) = \frac{\sqrt{N}}{a(N)} \eta_t^N(dx), \qquad (1.9)
$$

where $\{a(t), t \geq 0\}$ is a positive function with

$$
\lim_{t\to\infty} a(t)/\sqrt{t} = \infty, \qquad \lim_{t\to\infty} a(t)/t = 0,
$$
 (1.10)

KID K@ KKEX KEX E 1090

Fluctuations

▶ For every integer *m*, for each $g \in C^\infty(\mathbb{T}^d)$, define

$$
\|g\|_m=\left(\sum_{|k|\leq m}\int_{\mathbb{T}^d}|\partial^k g(x)|^2dx\right)^{1/2}<\infty.
$$

Let \mathbb{H}^m be the complete of $(C^\infty(\mathbb{T}^d),\|\cdot\|_m)$, and \mathbb{H}^{-m} the dual space of H*m*.

KID K@ KKEX KEX E 1090

 \blacktriangleright Let $\frac{1}{2}\triangle$ be the Laplace operator on \mathbb{T}^d and let $U(t)$ be the heat semigroup associated with $\frac{1}{2}\triangle$ on $\mathbb{T}^d.$

- ▶ (A0). $h(t, x) \equiv 0$, and V is a non-negative continuous function on T *^d* with partial derivatives up to order (5+3*D*), where $D = [d/2] + 1$.
- ▶ Let the condition (A0) hold. For $m \geq 1 + D$, let *W* be the continuous Gaussian martingale process taking its values in H−*^m* with mean 0 and variance given by

$$
E (W_t(\varphi)^2)
$$

= $\int_0^t \left(\frac{1}{2} \langle \rho_s, |\nabla \varphi|^2 \rangle + \langle \rho_s, \varphi^2 \rangle \langle \rho_s, V \rangle - 2 \langle \rho_s, \varphi \rangle \langle \rho_s, \varphi V \rangle + \langle \rho_s, \varphi^2 V \rangle \right) ds$
(2.1)

for every $\varphi \in \mathbb{H}^m$ and $t \in [0, T]$.

 \blacktriangleright Let F_t be the operator on \mathbb{H}^m defined by

$$
\mathcal{F}_{t}\varphi(x)=\langle\rho_t,\mathsf{V}\rangle\varphi(x)+\langle\rho_t,\varphi\rangle\mathsf{V}(x)-\mathsf{V}(x)\varphi(x). \qquad (2.2)
$$

KORK ERKER ADAM ADA

Fluctuation Theorem

Theorem 2.1 (Fluctuation Theorem)

Assume that the condition **(A0)** *holds. Then under P^N* γ *, the sequence* {η *^N*, *N* ≥ 1} *converges in law to the generalized Ornstein-Uhlenbeck process* η *with catalyst V in* $\mathbb{D}\left([0,T],\mathbb{H}^{-(4+2D)}\right)$. i.e., for any $\varphi\in\mathbb{H}^{4+2D}$,

$$
\langle \eta_t, \varphi \rangle = \langle \eta_0, U(t)\varphi \rangle + \int_0^t \langle \eta_s, F_s U(t-s)\varphi \rangle ds + \int_0^t \langle U(t-s)\varphi, dW_s \rangle,
$$
\n(2.3)

KORKAR KERKER E VOOR

▶ For any $t \in [0, T]$ and $\varphi \in C^2$, applying [\(1.3\)](#page-5-0) to $f(t, \mathbf{x}(t)) =$ $\frac{1}{\sqrt{2}}$ $\frac{N}{N}\sum_{i=1}^{N}\varphi(x_{i}(t)),$ we have

$$
\langle \eta_t^N, \varphi \rangle = \langle \eta_0^N, \varphi \rangle + \int_0^t \langle \eta_s^N, \frac{1}{2} \triangle \varphi \rangle \text{d}s + \int_0^t \langle \eta_s^N, F_s^N \varphi \rangle \text{d}s + M_t^N(\varphi),
$$
\n(2.4)

 \blacktriangleright where

$$
F_s^N \varphi(x) = \frac{N}{N-1} \langle \mu_s^N, V \rangle \varphi(x) + \langle \rho_s, \varphi \rangle V(x) - V(x) \varphi(x), \tag{2.5}
$$

 $\blacktriangleright M_t^N(\varphi)$ is a square integrable martingale with

$$
\langle M^N(\varphi) \rangle_t = \int_0^t \langle \mu_s^N, (\nabla \varphi)^2 \rangle ds + \frac{N}{N-1} \int_0^t \left(\langle \mu_s^N, \varphi^2 \rangle \langle \mu_s^N, V \rangle \right.- 2 \langle \mu_s^N, \varphi \rangle \langle \mu_s^N, \varphi V \rangle + \langle \mu_s^N, \varphi^2 V \rangle \Big) ds.
$$
\n(2.6)

▶ Informally,

- \blacktriangleright $M^{\mathcal{N}}(\varphi) \rightarrow W(\varphi)$ follows from $\mu^{\mathcal{N}} \rightarrow \rho$,
- **•** and so if η^N has a limit point η , then η satisfies [\(2.3\)](#page-11-0).
- ▶ In order to give a rigorous proof, we need some moment estimates.

▶ The sequence

$$
\left\{ \left\{ (M_t^N, \eta_t^N), t \in [0, T] \right\}, N \geq 1 \right\}
$$

is tight in $D([0, T], \mathbb{H}^{-(4+2D)} \times \mathbb{H}^{-(4+2D)}).$

- All limit points of the sequence $\{ \mathcal{L}((M^N, \eta^N)), N \geq 1 \}$ charge only in $C([0, T], \mathbb{H}^{-(4+2D)} \times \mathbb{H}^{-(4+2D)}).$
- ▶ Let (M, η) be a weak limit point of the sequence $\{(M^N, \eta^N), N \geq \eta\}$ 1} in $D([0, T], \mathbb{H}^{-(4+2D)} \times \mathbb{H}^{-(4+2D)}$). Then *M* has the same law as *W*, and (W, η) solves the equation [\(2.3\)](#page-11-0).

KORK ERKER ADAM ADA

Moderate deviations

Theorem 3.1 (Moderate deviations)

Assume that the condition **(A0)** *holds. Then the sequence* $\{\widetilde{\eta}^N, N \geq 1\}$ satisfies a large deviation principle on
 $D($ [0, T], $\mathbb{H}^{-(5+3D)}$), with the speed $s^2(N)/N$ and the *D*([0, *T*], H^{−(5+3*D*)) *with the speed a*²(*N*)/*N* and the good rate} *function I defined by*

$$
I(\nu) = \sup_{\psi \in C(\mathbb{T}^d)} \left\{ \langle \nu_0, \psi \rangle - \frac{1}{2} \left(\int_{\mathbb{T}^d} |\psi(x)|^2 \gamma(x) dx - \left(\int_{\mathbb{T}^d} \psi(x) \gamma(x) dx \right)^2 \right) \right\}
$$

+
$$
\sup_{\phi \in C^{\infty}([0, T] \times \mathbb{T}^d)} \left\{ \ell_{\phi}(\nu) - \frac{1}{2} \int_0^T \langle \rho_{s}, |\nabla \phi(s)|^2 \rangle ds - \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \int_{\mathbb{T}^d} (\phi(s, y) - \phi(s, x))^2 V(x) \rho_s(dy) \rho_s(dx) ds \right\}
$$

= $I_0(\nu_0) + I_{dyn}(\nu)$. (3.1)

KOD KARD KED KED BE YOUR

$$
\blacktriangleright
$$

$$
\ell_{\phi}(\nu) = \langle \nu_{\mathcal{T}}, \phi(\mathcal{T}) \rangle - \langle \nu_{0}, \phi(0) \rangle - \int_{0}^{\mathcal{T}} \left(\langle \nu_{s}, \partial_{s} \phi(s) + \frac{1}{2} \Delta \phi(s) \rangle \right) ds - \int_{0}^{\mathcal{T}} \left(\langle \rho_{s}, V \rangle \langle \nu_{s}, \phi(s) \rangle + \langle \rho_{s}, \phi(s) \rangle \langle \nu_{s}, V \rangle - \langle \nu_{s}, \phi(s) V \rangle \right) ds.
$$
\n(3.2)

▶ That is, for any closed set $F \subset D([0, T], \mathbb{H}^{-(5+3D)})$,

$$
\limsup_{N\to\infty}\frac{N}{a^2(N)}\log P_\gamma^N(\widetilde{\eta}^N\in\mathcal{F})\leq -\inf_{\nu\in\mathcal{F}}I(\nu)\qquad \qquad (3.3)
$$

and for any open set $O\subset D([0,\,T], \mathbb{H}^{-(5+3D)}),$

$$
\liminf_{N\to\infty}\frac{N}{a^2(N)}\log P^N_\gamma(\widetilde{\eta}^N\in O)\geq -\inf_{\nu\in O}I(\nu). \hspace{1cm} (3.4)
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

▶ For any $\phi \in C^{1,2}([0, T] \times \mathbb{T}^d)$,

$$
\langle \widetilde{\eta}_t^N, \phi(t) \rangle = \frac{1}{a(N)} \sum_{i=1}^N (\phi(t, x_i(t)) - \langle \rho_t, \phi(t) \rangle).
$$

 \blacktriangleright We consider the exponential martingale $Z_t^{\phi,N}$ $t_t^{\varphi,\prime\prime}$ associated with $\frac{a^2(N)}{N}$ $\frac{\langle N \rangle}{N} \langle \tilde{\eta}_l^N, \phi(t) \rangle$. Under the condition **(A0)** holds, P_{γ}^N . martingale $Z^{\phi,N}_t$ $t^{\varphi, \bm{\gamma}}$ has the following approximation:

$$
Z_T^{\phi,N} = \exp\left\{\frac{a^2(N)}{N} \ell_\phi(\tilde{\eta}^N) - \frac{a^2(N)}{2N} \int_0^T \left(\langle \mu_s^N, |\nabla \phi(s)|^2 \rangle \right. \\ \left. + \int_{\mathbb{T}^d} \int_{\mathbb{T}^d} (\phi(s, y) - \phi(s, x))^2 V(x) \mu_s^N(dy) \mu_s^N(dx) \right) ds \\ + \frac{a^2(N)}{N} \int_0^T \langle \tilde{\eta}_s^N, \phi(s) \rangle \langle \mu_s^N - \rho_s, V \rangle ds + o\left(\frac{a^2(N)}{N}\right) \right\}.
$$
\n(3.5)

KORKAR KERKER E VOOR

\blacktriangleright Define

$$
\Lambda_0(\psi) = \frac{1}{2} \left(\int_{\mathbb{T}^d} |\psi(x)|^2 \gamma(x) dx - \left(\int_{\mathbb{T}^d} \psi(x) \gamma(x) dx \right)^2 \right),
$$

$$
\Lambda_{dyn}(\phi) = \frac{1}{2} \int_0^T \langle \rho_{s}, |\nabla \phi(s)|^2 \rangle ds
$$

$$
+ \frac{1}{2} \int_0^T \int_{\mathbb{T}^d} \int_{\mathbb{T}^d} (\phi(s, y) - \phi(s, x))^2 V(x) \rho_s(dy) \rho_s(dx) ds,
$$

$$
\Lambda(\psi, \phi) = \Lambda_0(\psi) + \Lambda_{dyn}(\phi)
$$

KOKK@KKEKKEK E 1990

► If $\int_0^T \langle \widetilde{\eta}_s^N, \phi(s) \rangle \langle \mu_s^N - \rho_s, V \rangle ds \to 0$ in MDP sense, then then

$$
Z_T^{\phi,N} = \exp\left\{\frac{a^2(N)}{N}\left(\ell_\phi(\widetilde{\eta}^N) - \Lambda_{dyn}(\phi)\right) + o\left(\frac{a^2(N)}{N}\right)\right\}.
$$

▶ For any $\nu \in D([0, T], \mathbb{H}^{-(5+3D)})$ and the ball $B(\nu, \varepsilon)$, when $N \to \infty$, $\varepsilon \to 0$.

$$
\frac{N}{a^2(N)}\log P^N_\gamma\left(B(\nu,\varepsilon)\right)\sim -I(\nu)
$$

KORKARA KERKER DAGA

- **a** C. C. Chang, H. T. Yau. Fluctuations of one dimensional Ginzburg-Landau models in nonequilibrium. *Commun. Math. Phys.* **145**(1992), 209–234.
- **F. Q. Gao and J. Quastel, Moderate deviations from hydro**dynamic limit of the symmetric exclusion process. *Science in China. Series A.* **46**(2003), 577-592.
- I. Grigorescu, Large deviations for a Catalytic Fleming-Viot Branching system. *Comm. Pure Appl. Math.* **LX** (2007), 1056-1080.
- M.Z.Guo, G.C.Papanicolaou, S.R.S.Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions. *Comm. Math. Phys.* 118 (1988), 31–59.
- C. Kipnis and C. Landim, *Scaling Limit of Interacting Particle Systems.* Grundlehren der Mathematischen Wissenschaften , 320, Springer-Verlag, Berlin Heidelberg, 1999.
- **a** C. Kipnis, S. Olla, and S. R. S. Varadhan, Hydrodynamics and large deviations for simple exclusion processes. *Comm. Pure Appl. Math.* 42 (1989), 115-137.
- S. Meleard, Convergence of the fluctuations for interacting diffusions with jumps associated with Boltzmann equations, *Stochastics: An International Journal of Probability and Stochastic Processes*. 63 (1998), 195-225.

KORK ERKER ADAM ADA

Thank you!

Kロトメ部トメミトメミト ミニのQC